

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO

Departamento de Matemática Pura e Aplicada Centro de Ciências Exatas, Naturais e da Saúde - CCENS

Disciplina: Álgebra I (2023/1) Prof^o. Victor Martins

Ementa: Números inteiros: divisibilidade e congruências. Anéis: subanéis, ideais, anéis quocientes, homomorfismo. Anéis de polinômios: o algoritmo da divisão, polinômios irredutíveis e ideais maximais, fatoração única e critério de Eisenstein.

1 Cronograma

Data	Tópico	Referências
21 /02 (1)	A	
21/03 (ter)	Apresentação da disciplina	[2], [4], [5]
	Sistemas de Numeração	
	O processo de contagem.	
	A representação de um número em uma base.	
	Relação de equivalência e relação de ordem (Revisão)	
23/03 (qui)	(03 (qui) Números naturais	
	Os axiomas de Peano	
	Ordenação dos números naturais	
28/03 (ter)	O princípio da boa ordenação e o axioma de indução finita	[2], [4], [5]
30/03 (qui)	qui) O conjunto dos números inteiros	
	Ordenação dos números inteiros	
	Princípio do menor inteiro	
04/04 (ter)	Primeiro princípio de indução. Segundo princípio de indução.	[2], [4], [5]
06/04 (qui)	06/04 (qui) Divisão euclidiana	
	Múltiplos e divisores	
	O algoritmo da divisão	
11/04 (ter)	Representação de um número em uma base	[2], [4], [5]
	Critérios de divisibilidade	
13/04 (qui)	Números primos	[2], [4], [5]
	Teorema fundamental da ariitmética	
	A procura de números primos	
18/04 (ter)	Máximo divisor comum	[2], [4], [5]
20/04 (qui)	Máximo divisor comum	[2], [4], [5]
25/04 (ter)	Mínimo múltiplo comum	[2], [4], [5]
27/04 (qui)	Equações diofantinas lineares	[2], [4], [5]

Data	Tópico	Referências	
02/05 (ter)	Congruências	[2] [4] [5]	
02/05 (ter) 04/05 (qui)	Congruências. O teorema chinês do resto.	[2], [4], [5]	
$\frac{04/05 \text{ (qui)}}{09/05 \text{ (ter)}}$	Os teoremas de Fermat, Euler e Wilson	[2], [4], [5]	
, , ,	Exercícios	[2], [4], [5]	
11/05 (qui)	Exercicios		
16/05 (ter)	PROVA 1		
18/05 (qui)	Introdução à álgebra abstrata I:		
	Estruturas definidas por uma ou duas operações (Revisão)		
23/05 (ter)	Anéis: primeiras definições	[1], [3]	
25/05 (qui)	Subanéis	[1], [3]	
30/05 (ter)	Ideais	[1], [3]	
01/06 (qui)	Ideais maximais	[1], [3]	
06/06 (ter)	Anel quociente	[1], [3]	
13/06 (ter)	Homomorfismo de anéis. Núcleo e imagem de um homomor-	[1], [3]	
	fismo		
15/06 (qui)	15/06 (qui) Introdução à álgebra abstrata II:		
	Resolução de equações algébricas por radicais		
20/06 (ter)	Anel de polinômios	[1], [3]	
22/06 (qui)	Algoritmo da divisão	[1], [3]	
	Algoritmo de Briot Ruffini		
27/06 (ter)	Ideais principais e MDC	[1], [3]	
29/06 (qui)	Polinômios irredutíveis	[1], [3]	
04/07 (ter)	Fatoração única	[1], [3]	
06/07 (qui)	Polinômios com coeficientes inteiros	[1], [3]	
11/07 (ter)	Critério de Eisenstein	[1], [3]	
13/07 (qui)	Exercícios	[1], [3]	
18/07 (ter)	PROVA 2		
20/07 (qui)			
25/07 (ter)	PROVA FINAL		

2 Referências Bibliográficas

2.1 Principais

- [1] A. Gonçalves, *Introdução à Álgebra*. Projeto Euclides, IMPA, Rio de Janeiro, (2006).
- [2] A. Hefez, *Elementos de Aritmética*. 2ª Edição, Textos Universitários, SBM, Rio de Janeiro, (2006).
- $[3\]$ A. Hefez e M. L
 .T. Villela, $Polin\^omios\ e\ equaç\~oes\ alg\'ebricas.$
 $2^{\underline{a}}$ Edição, Coleção

PROFMAT, SBM, Rio de Janeiro, (2018).

- [4] A. Vidigal, D. Avritzer, et al., Fundamentos de Álgebra. Editora UFMG, (2005).
- [5] J. C. Silva e O. R. Gomes, Estruturas algébricas para licenciatura. Elementos de aritmética superior. 1ª Edição, volume 2, Editora Edgard Blücher, São Paulo, (2018).

2.2 Auxiliares

- [6] A. Garcia e Y. Lequain, *Elementos de Álgebra*. Projeto Euclides, IMPA, Rio de Janeiro, (2010).
- [7] A. Hefez, *Curso de Álgebra*. 5ª Edição, volume 1, Coleção Matemática Universitária, IMPA, Rio de Janeiro, (2016).
- [8] F. Brochero, C. G. Moreira, et al., *Teoria do Números: um passeio com primos e outros números familiares pelo mundo inteiro*.5ª Edição, Projeto Euclides, IMPA, Rio de Janeiro, (2018).
- [9] J. C. Silva e O. R. Gomes, Estruturas algébricas para licenciatura. Elementos de álgebra moderna. 1. Edição, volume 3, Editora Edgard Blücher, São Paulo, (2020).
- [10] J. P. Oliveira, *Introdução à Teoria dos Números*. 3ª Edição, Coleção Matemática Universitária, IMPA, Rio de Janeiro, (2018).

3 Critérios de Avaliação

A avaliação da disciplina será através de 2 (duas) provas individuais e sem consulta e de atividades e/ou testes que serão aplicados, sem aviso prévio, após as aulas teóricas. A distribuição dos pontos será dada da seguinte forma:

	Avaliação	Data	Valor	Peso
P1	Prova 1	11/05	10 pontos	1
P2	Prova 2	18/07	10 pontos	1
AT	Atividades/Testes	Semestre inteiro	10 pontos	2

Cada atividade e/ou teste aplicado após as aulas teóricas será avaliado com pontuação de 0 a 10 e a nota AT será obtida fazendo a média aritmética dessas atvidades e/ou testes.

Qualquer prova que o estudante perder só será aplicada novamente mediante apresentação de comprovante que justifique a ausência, como por exemplo, atestado médico. Para as atividades aplicadas após as aulas não haverá segunda chamada. A nota final (NF) do estudante será:

$$NF = \frac{P1 + P2 + 2 \cdot AT}{4}.$$

O estudante deverá atingir nota final igual ou superior a 7 para ser aprovado, caso contrário, terá direito a fazer a Prova Final, no dia 25/07, de acordo com o regimento da universidade.

4 Atendimento

As dúvidas deverão ser sanadas, preferencialmente, após as aulas na própria sala de aula. Além disso, haverá atendimento para dúvidas nas terças - feiras de 18h30min às 19h30min e quintas - feiras de 14h30min às 15h30min.

5 Outras informações

As listas de exercícios e demais informações e atualizações da disciplina poderão ser encontradas na página https://www.victormartins.net/algebra-i