

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO

Departamento de Matemática Pura e Aplicada Centro de Ciências Exatas, Naturais e da Saúde - CCENS

Disciplina: $\acute{A}lgebra~I$ Prof $^{\circ}$. Victor~Martins

Lista 8: Estruturas definidas por uma operação

(1) Em cada caso a seguir, verifique se a operação * sobre X é associativa, comutativa e tem elemento neutro. Determine também o conjuntos dos elementos regulares para a operação dada. Para as operações que possuem elemento neutro, determine os elementos simetrizáveis:

(a)
$$X = \mathbb{R} \ e \ x * y = \frac{x + y}{2}$$

(b)
$$X = \mathbb{R} e x * y = x$$

(c)
$$X = \mathbb{R} \ e \ x * y = \sqrt{x^2 + y^2}$$

(d)
$$X = \mathbb{R}^* e \ x * y = \frac{x}{y}$$

(2) Em cada caso a seguir está definida uma operação sobre $\mathbb{Z} \times \mathbb{Z}$. Verifique se ela é associativa, comutativa e tem elemento neutro. Determine também o conjuntos dos elementos regulares para a operação dada. Para as operações que possuem elemento neutro, determine os elementos simetrizáveis:

(a)
$$(a,b)*(c,d) = (ac,0)$$

(b)
$$(a,b) \triangle (c,d) = (a+c,b+d)$$

(c)
$$(a,b)\odot(c,d)=(ac,ad+bc)$$

(d)
$$(a,b) \oslash (c,d) = (a+c,bd)$$

(3) Estabeleça as condições sobre $m, n \in \mathbb{Z}$ de modo que a operação * sobre \mathbb{Z} dada pela lei x*y = mx + ny:

- (a) seja associativa;
- (b) seja comutativa;
- (c) admita elemento neutro.

(4) Mostre que nenhum elemento de \mathbb{R} é regular para a operação * assim definida:

$$x * y = x^2 + y^2 - xy.$$

(5) Em cada caso a seguir está definida uma operação * sobre X. Faça a tábua da operação:

1

- (a) $X = \{1, 2, 3, 6\}$ e x * y = mdc(x, y)
- (b) $X = \{1, 3, 9, 27\}$ e x * y = mmc(x, y)
- (c) $X = \{1, \sqrt{2}, \frac{3}{2}\}$ e $x * y = \min(x, y)$
- (d) $X = \{3\sqrt{2}, \pi, \frac{7}{2}\}\ e\ x * y = \max(x, y)$
- (6) Em cada caso a seguir está definida uma operação * sobre $X = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$. Construa a tábua da operação.
 - (a) $x * y = x \cup y$
 - (b) $x * y = x \cap y$
 - (c) $x * y = (x \cup y) (x \cap y)$
- (7) Construa as tábuas das operações * e \triangle sobre $X = \{0, 1, 2, 3\}$ assim definidas:
 - (a) $x * y = \text{resto da divisão em } \mathbb{Z} \text{ de } x + y \text{ por } 4.$
 - (b) $x \triangle y = \text{resto da divisão em } \mathbb{Z} \text{ de } x \cdot y \text{ por } 4.$
- (8) Construa as tábuas das operações \oplus e \odot sobre $X = \{0, 1, 2, 3, 4\}$ assim definidas:
 - (a) $x \oplus y = \text{resto da divisão em } \mathbb{Z} \text{ de } x + y \text{ por 5}.$
 - (b) $x \odot y = \text{resto da divisão em } \mathbb{Z} \text{ de } x \cdot y \text{ por 5}.$
- (9) A partir da tábua abaixo, da operação \odot sobre $X = \{1, 2, 3, 4\}$, calcule os seguintes elementos:

\odot	1	2	3	4
1	1	1	1	1
2	1	2	3	4
3	1	3	4	2
4	1	4	2	3

- (a) $(3 \odot 4) \odot 2$
- (b) $3 \odot (4 \odot 2)$
- (c) $(4 \odot (3 \odot 3)) \odot 4$
- (d) $(4 \odot 3) \odot (3 \odot 4)$
- (e) $((4 \odot 3) \odot 3) \odot 4$
- (10) Construa a tábua da operação de intersecção sobre a família de conjuntos $\mathcal{F} = \{A, B, C, D\}$, sabendo que

$$A \cap B = B$$
, $B \cap C = C$, $C \cap D = D$.

Em seguida, estabeleça:

(a) qual é o elemento neutro;

- (b) que elementos são simetrizáveis;
- (c) que elementos são regulares.
- (11) Nos itens a seguir verifique qual a maior estrutura (semigrupo, monóide ou grupo) que os conjuntos com as operações indicadas possuem:
 - (a) O conjunto $\wp(X)$ das partes de um conjunto X, com a operação de união de conjuntos.
 - (b) O conjunto $\wp(X)$ das partes de um conjunto X, com a operação de intersecção de conjuntos.
 - (c) O conjunto Z dos números inteiros, com a operação de subtração.
 - (d) O conjunto N* dos números naturais não nulos, com a operação de potenciação.
 - (e) O conjunto Q dos números racionais, com a operação de divisão.
- (12) Verifique se os conjuntos abaixo com as operações dadas são grupos:
 - (a) o conjunto dos números ímpares com a multiplicação.
 - (b) o conjunto dos múltiplos de 3 com a adição.
 - (c) conjunto dos números da forma $a + b\sqrt{2}$, onde $a, b \in \mathbb{R}$ com a adição.
 - (d) conjunto dos polinômios da forma ax + b, onde $a, b \in \mathbb{N}$ com a adição.
 - (e) conjunto dos inteiros não positivos \mathbb{Z}_{-} , com a adição.
 - (f) conjunto $C = \{-2, -1, 0, 1, 2\}$, com a adição.
 - (g) conjunto $A = \{1, -1\}$, com a multiplicação.
- (13) Sabemos que em \mathbb{Z} , $m \equiv n \pmod{5}$ se e somente se, m n = 5k, para algum $k \in \mathbb{Z}$. Desta relação de equivalência em \mathbb{Z} , vem o conjunto quociente $\mathbb{Z}_5 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}$. Faça a tábua da adição em \mathbb{Z}_5 . Logo em seguida, determine a estrutura (semigrupo, monóide ou grupo) de \mathbb{Z}_5 .
- (14) Defina em Z a operação ⊙ da seguinte forma:

$$a \odot b = a + b - ab$$
.

Qual a estrutura (semigrupo, monóide ou grupo) de ℤ com a operação ⊙?

(15) Defina em \mathbb{Z} a operação \oplus da seguinte forma:

$$a \oplus b = a + b^2$$
.

Qual a estrutura (semigrupo, monóide ou grupo) de \mathbb{Z} com a operação \oplus ?

- (16) Mostre que \mathbb{R} dotado da operação * tal que $x * y = \sqrt[3]{x^3 + y^3}$ é um grupo abeliano.
- (17) Mostre que \mathbb{R} munido da operação \triangle tal que $x \triangle y = x + y 3$ é um grupo abeliano.
- (18) Mostre que $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$ é um grupo aditivo abeliano. Estabeleça as condições sobre a e b para que $\mathbb{Q}[\sqrt{2}]$ seja também um grupo multiplicativo.

3