

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO

Departamento de Matemática Pura e Aplicada Centro de Ciências Exatas, Naturais e da Saúde - CCENS

Disciplina: $\acute{A}lgebra~I$ Prof $^{\circ}$. Victor~Martins

Lista 9: Anéis, corpos e subanéis

(1) Calcule os divisores de zero dos seguintes anéis: \mathbb{Z}_6 , \mathbb{Z}_8 , \mathbb{Z}_{18} .

- (2) Seja $f: \mathbb{Z} \to \mathbb{Z}$ uma função tal que f(x+y) = f(x) + f(y) e $f(x \cdot y) = f(x) \cdot f(y)$ para quaisquer x e y em \mathbb{Z} . Prove que ou $f = I_{\mathbb{Z}}$ ou $f \equiv 0$ é a função constante zero.
- (3) Seja $f: \mathbb{Q} \to \mathbb{Q}$ uma função tal que f(x+y) = f(x) + f(y) e $f(x \cdot y) = f(x) \cdot f(y)$ para quaisquer x e y em \mathbb{Q} . Prove que ou $f = I_{\mathbb{Q}}$ ou $f \equiv 0$ é a função constante zero.
- (4) Seja $f : \mathbb{R} \to \mathbb{R}$ uma função tal que f(x+y) = f(x) + f(y) e $f(x \cdot y) = f(x) \cdot f(y)$ para quaisquer x e y em \mathbb{R} . Prove que, se f é contínua então ou $f = I_{\mathbb{R}}$ ou $f \equiv 0$ é a função constante zero.
- (5) Prove que se $(A, +, \cdot)$ é um anel qualquer então para quaisquer $x, y \in A$ são válidas as seguintes propriedades:
 - (a) $0 \cdot x = x \cdot 0 = 0$
 - (b) $-(x \cdot y) = (-x) \cdot y = x \cdot (-y)$
 - (c) Se existe $1 \in A$, então $(-1) \cdot x = -x$.
- (6) Mostre que o conjunto

$$M_2(\mathbb{R}) = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) : a, b, c, d \in \mathbb{R} \right\}$$

das matrizes reais 2×2 com as operações usuais de soma e produto de matrizes é um anel com unidade não comutativo e com divisores de zero.

(7) Sejam p um número primo e $\mathbb{Z}[\sqrt{p}] = \{a + b\sqrt{p} : a, b \in \mathbb{Z}\}$. Mostre que $\mathbb{Z}[\sqrt{p}]$ com soma e produto definidos por

$$(a + b\sqrt{p}) + (c + d\sqrt{p}) = (a + c) + (b + d)\sqrt{p}$$

$$(a+b\sqrt{p})\cdot(c+d\sqrt{p})=(ac+pbd)+(bc+ad)\sqrt{p},$$

para quaisquer $a, b, c, d \in \mathbb{Z}$, é um domínio de integridade.

(8) Mostre que o anel C[0, 1] das funções reais contínuas definidas em [0, 1] possui divisores de zero.

- (9) Seja A um domínio de integridade e $a,b,c\in A$. Prove que, se $a\neq 0$ e ab=ac então b=c.
- (10) Sejam p um número primo e

$$A = \left\{ \frac{m}{n} \in \mathbb{Q} : mdc(p, n) = 1 \right\}.$$

Mostre que A é um anel com as operações usuais de fração.

- 11) Sejam D um domínio de integridade e $a \in D$, $a \neq 0$. Mostre que a função $\phi_a : D \to D$ dada por $\phi_a(x) = a \cdot x$ é injetiva. Em seguida, conclua que todo domínio de integridade finito é um corpo.
- (12) Seja A um anel tal que $x^2 = x$ para todo $x \in A$. Mostre que A é um anel comutativo.
- (13) Sejam A um anel, B um conjunto e $f: B \to A$ uma função bijetiva de B sobre A. Se para cada $x, y \in B$ definimos

$$x + y = f^{-1}(f(x) + f(y))$$
 e $x \cdot y = f^{-1}(f(x) \cdot f(y))$

então prove que:

- (a) $(B, +, \cdot)$ é um anel.
- (b) f(x+y) = f(x) + f(y) e $f(x \cdot y) = f(x) \cdot f(y)$ para quaisquer $x, y \in B$.
- (14) Sejam $(A, \bar{+}, \bar{\cdot})$ e (B, \oplus, \odot) anéis. Considere o conjunto

$$A \times B = \{(a, b) : a \in A, b \in B\},\$$

com as operações de soma e produto definidas por

$$(a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 \oplus b_2)$$

$$(a_1, b_1) \cdot (a_2, b_2) = (a_1 \cdot a_2, b_1 \odot b_2).$$

Mostre que $(A \times B, +, \cdot)$ é um anel. Este anel é chamado **produto direto** de A com B.

- (15) Prove que se definirmos no conjunto $\Im(\mathbb{R})$ de todas as funções $f: \mathbb{R} \to \mathbb{R}$ a soma usual de função e considerarmos o produto dado por $(g \cdot f)(x) = g(f(x))$, então $\Im(\mathbb{R})$ não é um anel.
- (16) Seja $\{B_i\}_{i\in\mathbb{N}}$ uma sequência de subanéis de um anel A. Prove que $B=\bigcap_{i\in\mathbb{N}}B_i$ é também um subanel de A.
- (17) Seja $\{B_i\}_{i\in\mathbb{N}}$ uma sequência de subanéis de um anel A. Prove que, se $B-0\subset B_1\subset\ldots\subset B_n\subset\ldots\subset B_n\subset\ldots$ então $B=\bigcup_{i\in\mathbb{N}}B_i$ é também um subanel de A.

- (18) Mostre que \mathbb{Z}_3 não é subanel de \mathbb{Z}_5 .
- (19) Sejam A um anel e $a \in A$. Prove que $B = \{x \in A : x \cdot a = a \cdot x\}$ é um subanel de A.
- (20) Sejam A um anel e $a \in A$. Prove que $B = \{x \in A : x \cdot a = 0\}$ é um subanel de A.
- (21) Seja $\{K_i\}_{i\in\mathbb{N}}$ uma sequência de subcorpos de um corpo K. Prove que $K = \bigcap_{i\in\mathbb{N}} K_i$ é também um subcorpo de K. Mostre também que a intersecção P de todos os subcorpos de um corpo K é o menor subcorpo de K (P é chamado **corpo primo** de K).
- (22) Calcule todos os subanéis de \mathbb{Z}_{12} .
- (23) Prove que se A é um anel de divisão então Z(A) o centro de A é um corpo.
- (24) Seja $(A, +, \cdot)$ um anel com unidade $1 \in A$. Defina duas novas operações no conjunto A usando as operações + e \cdot de A por

$$a \oplus b = a + b + 1, \quad \forall \ a, b \in A$$

$$a \odot b = a \cdot b + a + b, \quad \forall \ a, b \in A.$$

- (a) Mostre que (A, \oplus, \odot) é um anel.
- (b) Qual é o elemento zero de (A, \oplus, \odot) ?
- (c) (A, \oplus, \odot) possui unidade? Qual?
- (25) Mostre que o centro $Z(M_2(\mathbb{R}))$ do anel das matrizes 2×2 com entradas reais é o conjunto

$$Z(M_2(\mathbb{R})) = \left\{ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} : a \in \mathbb{R} \right\}.$$