

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO

Departamento de Matemática Pura e Aplicada Centro de Ciências Exatas, Naturais e da Saúde - CCENS Disciplina: Álgebra linear - Prof. Victor Martins

Prova 3 (segunda chamada) - 31/01/2023

Nome:______Matrícula:_____

Questão 1: Seja $T: \mathbb{R}^3 \to \mathbb{R}^2$ uma aplicação dada por T(x, y, z) = (z, 0).

- (a) $(1,0 \ ponto)$ Mostre que T é uma transformação linear.
- (b) $(1,0 \ ponto)$ Determine $[T]^{\alpha}_{\beta}$, onde $\alpha = \{(1,1,1),(0,1,1),(0,0,1)\}$ e $\beta = \{(1,0),(0,2)\}$ são bases de \mathbb{R}^3 e \mathbb{R}^2 , respectivamente.

Questão 2: Considere $P_1(\mathbb{R})$ o espaço dos polinômios de grau no máximo um com uma variável real e a aplicação $T: P_1(\mathbb{R}) \to \mathbb{R}^2$ dada por T(ax+b) = (b,a).

- (a) $(1,0 \ ponto)$ Mostre que T é uma transformação linear.
- (b) (0.5 pontos) Determine [T].
- (b) (0.5 pontos) Determine o núcleo de T.
- (c) (1.5 pontos) T é um isomorfismo? Se sim, determine T^{-1} e $[T^{-1}]$.

Questão 3: Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ um operador linear tal que

$$[T] = \left(\begin{array}{rrr} 1 & 0 & 0 \\ -1 & 2 & 1 \\ -2 & 0 & 3 \end{array}\right).$$

- (a) (1,5 pontos) Determine, caso existam, os autovalores e os autovetores de T.
- (b) (1,0 pontos) T é diagonalizável? Se sim, exiba uma base α de \mathbb{R}^3 formada por autovetores e $[T]^{\alpha}_{\alpha}$.

Questão 4: (2,0 pontos) Assinale (V) para as afirmações verdadeiras e (F) para as afirmações falsas. Demonstre ou dê um contraexemplo, para justificar sua resposta.

- (a) () Existe uma transformação linear $T:\mathbb{R}^5 \to M_2(\mathbb{R})$ injetora.
- (b) () O operador linear $T: \mathbb{R}^2 \to \mathbb{R}^2$, dado por T(x,y) = (-y,5x+6y) é diagonalizável.
- (c) () Existe pelo menos uma transformação linear bijetora $T:M_2(\mathbb{R})\to P_3(\mathbb{R})$ e portanto, $M_2(\mathbb{R})\simeq P_3(\mathbb{R})$.
- (d) () Seja $T:U\to V$ uma transformação linear. Se dim U>dim V, então T não é injetora.

Questão extra:

- (a) (0.5 pontos) Dê um exemplo de uma transformação linear $T: \mathbb{R}^2 \to M_2(\mathbb{R})$.
- (b) (0.5 pontos) Dê um exemplo de uma transformação linear injetora $T: \mathbb{R}^2 \to P_2(\mathbb{R})$.
- (c) (0.5 pontos) Dê um exemplo de uma transformação linear sobrejetora $T: M_2(\mathbb{R}) \to P_2(\mathbb{R})$.
- (d) (0,5 pontos) Enuncie o Teorema do Núcleo e da Imagem.
- (e) (0.5 pontos) O que significa dizer que um operador linear é diagonalizável?