

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO

Departamento de Matemática Pura e Aplicada Centro de Ciências Exatas, Naturais e da Saúde

Disciplina: Álgebra Linear

Prof°. Victor Martins

Lista 8: Transformações lineares

- (1) Verifique se cada uma das aplicações abaixo é uma transformação linear:
 - (a) $f: \mathbb{R}^2 \to \mathbb{R}^2$ dada por f(x,y) = (x+y, x-y)
 - (b) $g: \mathbb{R}^2 \to \mathbb{R}$ dada por $g(x, y) = x \cdot y$
 - (c) $h: M_2(\mathbb{C}) \to \mathbb{C}$ dada por h(A) = det A
 - (d) $L: M_3(\mathbb{R}) \to \mathbb{R}$ dada por L(A) = tr(A)
 - (e) $U: \mathbb{R}^3 \to \mathbb{R}^3$ dada por $U(x, y, z) = (x^2 3y, 5z, 0)$
 - (f) $M: P_2(\mathbb{C}) \to P_3(\mathbb{C})$ dada por $M(ax^2 + bx + c) = ax^3 + bx^2 + cx$
 - (g) $S: \mathbb{R}^4 \to \mathbb{R}^3$ dada por S(x, y, z, w) = (y, z w, 2y + z + 2w)
 - (h) $N: \mathbb{R}^3 \to \mathbb{R}^2$ dada por $N(x, y, z) = \begin{pmatrix} x & y & z \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 0 & -1 \\ 1 & 1 \end{pmatrix}$
 - (i) $R: \mathbb{R}^2 \to \mathbb{R}^2$ dada por $R(x,y) = (x,2^y-2^x)$
 - (j) $T:\mathbb{R}\to\mathbb{R}$ dada por T(x)=|x|
 - (k) $\phi : \mathbb{R}^2 \to \mathbb{R}$ dada por $\phi(x, y) = x 2y + 3$
 - (l) $T:\mathbb{R}^2 \to \mathbb{R}^2$ dada por T(x,y) = (1+x,y)
 - (m) $T: \mathbb{R}^3 \to M_2(\mathbb{R})$ dada por $T(x, y, z) = \begin{pmatrix} 2x y & x + y + z \\ x + y z & 2y 3z \end{pmatrix}$
 - (n) $T: \mathbb{R}^3 \to P_2(\mathbb{R})$ dada por $T(a,b,c) = a + bx + cx^2$
 - (o) $T: \mathbb{R}^2 \to \mathbb{R}^2$ dada por T(x, y) = (xy, x)
- (2) Seja $T: V \to W$ uma transformação linear. Se existe um vetor $u \in V$ tal que T(u) = 0 (vetor nulo de W), podemos concluir então que u = 0 (vetor nulo de V)? Justifique se for verdade ou apresente um contra-exemplo se for falso.
- (3) Encontre a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ tal que T(1,0,0)=(2,0), T(0,1,0)=(1,1) e T(0,0,1)=(0,-1). Obtenha $v\in \mathbb{R}^3$ tal que T(v)=(3,2).
- (4) Qual a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^3$ tal que T(1,1)=(3,2,1) e T(0,-2)=(0,1,0)? Obtenha T(1,0) e T(0,1).

- (5) Qual a transformação linear $S:\mathbb{R}^3\to\mathbb{R}$ tal que $S(1,1,1)=3,\ S(0,1,-2)=1$ e S(0,0,1)=-2?
- (6) Seja $A: \mathbb{R}^2 \to \mathbb{R}^2$ uma transformação linear dada por A(x,y) = (5x+4y, -3x-2y). Para quais valores de $\lambda \in \mathbb{R}$ existem vetores não nulos $u \in \mathbb{R}^2$ tais que $A(u) = \lambda \cdot u$? Esses vetores u são únicos para cada λ fixado? Determine esses vetores. O que você pode concluir dos vetores "associados" a cada λ ?
- (7) Obtenha o núcleo, a imagem e suas respectivas dimensões para cada uma das aplicações do Exercício 1 que forem transformações lineares. Verifique o Teorema do Núcleo e da Imagem em cada caso.
- (8) Obtenha o núcleo e a imagem da transformação linear derivação $D: P_3(\mathbb{R}) \to P_3(\mathbb{R})$ dado por D(p(x)) = p'(x).
- (9) Considere a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ dada por T(x,y,z) = (z,x-y,-z). Determine uma base do núcleo de T. Qual a dimensão da imagem de T? A imagem de T é todo o \mathbb{R}^3 ? Justifique.
- (10) Pode existir uma transformação linear $T: \mathbb{R}^4 \to \mathbb{R}^5$ cuja imagem é todo \mathbb{R}^5 ? Justifique e tente generalizar cada resultado.
- (11) Pode existir uma transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^2$ tal que $N(T) = \{(0,0,0)\}$? Justifique e tente generalizar cada resultado.
- (12) Sejam $T: V \to W$ uma transformação linear e $B = \{v_1, v_2, \ldots, v_n\}$ uma base de V. Mostre que $B' = \{T(v_1), T(v_2), \ldots, T(v_n)\}$ gera a Im(T), ou seja, qualquer vetor da imagem de T é uma combinação linear dos vetores de B'.
- (13) Descreva explicitamente uma transformação linear $T: \mathbb{C}^3 \to \mathbb{C}^3$ tal que sua imagem seja o espaço gerado pelos vetores u = (2i, 1, -3) e v = (0, -i, 1+i).
- (14) Descreva explicitamente uma transformação linear $F: \mathbb{R}^2 \to \mathbb{R}^2$ cujo núcleo seja a reta y = x e cuja imagem seja a reta y = 3x.
- (15) Verifique quais das transformações lineares do Exercício 1 são injetoras e quais são sobrejetoras.
- (16) Dados $T: U \to V$ transformação linear injetora e $u_1, u_2, \dots u_k$ vetores LI em U, mostre que o conjunto $\{T(u_1, T(u_2), \dots, T(u_k))\}$ é LI.
- (17) Dê, quando possível, exemplos de transformações lineares satisfazendo as condições dos itens abaixo. Quando não for possível, justifique.
 - (a) $T: \mathbb{R}^3 \to \mathbb{R}^2$ sobrejetora.
 - (b) $S: \mathbb{R}^3 \to \mathbb{R}^2 \text{ com } N(S) = \{(0,0,0)\}.$
 - (c) $L: \mathbb{R}^3 \to \mathbb{R}^2$ com $Im(L) = \{(0,0)\}.$

- (d) $M: M_2(\mathbb{C}) \to P_3(\mathbb{R})$ isomorfismo.
- (e) $H: P_2(\mathbb{R}) \to \mathbb{R}^4$ isomorfismo.
- (18) Seja T a transformação linear de \mathbb{R}^3 em \mathbb{R}^3 dada por T(x,y,z)=(3x,x-y,2x+y+z). Verifique se T é invertível e, em caso afirmativo, determine T^{-1} .
- (19) Seja $P:\mathbb{C}^3\to\mathbb{C}^3$ a transformação linear tal que $P(1,0,0)=(1,0,i),\ P(0,1,0)=(0,1,1),\ P(0,0,1)=(i,0,1).$ Verifique se P é um isomorfismo.
- (20) Seja $T: P_1(\mathbb{R}) \to \mathbb{R}^2$ a transformação linear dada por T(p(x)) = (p(0), p(1)). Mostre que T é injetiva.
- (21) Se $T: \mathbb{R}^n \to \mathbb{R}$ é uma transformação linear para a qual existe $v \in \mathbb{R}^n$ tal que $T(v) \neq 0$, determine dim N(T).