

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO

Departamento de Matemática Pura e Aplicada Centro de Ciências Exatas, Naturais e da Saúde

Disciplina: $\acute{A}lgebra\ Linear$ Prof°. $Victor\ Martins$

Lista 1: Espaços vetoriais reais

- (1) Dado n um inteiro positivo, seja $P_n(\mathbb{R}) = \{a_0 + a_1x + \dots + a_nx^n : a_i \in \mathbb{R}\}$ o conjunto dos polinômios de grau menor ou igual a n de uma variável com coeficientes reais. Mostre que $P_n(\mathbb{R})$ é um \mathbb{R} -espaço vetorial.
- (2) Dados $a, x_1, y_1, x_2, y_2 \in \mathbb{R}$, considere as seguintes operações definidas em \mathbb{R}^2 :

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

 $a(x_1, y_1) = (3ax_1, 3ay_1).$

Mostre que com essas operações, \mathbb{R}^2 não é um \mathbb{R} -espaço vetorial.

(3) Dados $a, x_1, y_1, x_2, y_2 \in \mathbb{R}$, considere as seguintes operações definidas em \mathbb{R}^2 :

$$(x_1, y_1) + (x_2, y_2) = (x_1 \cdot x_2, y_1 \cdot y_2)$$

 $a(x_1, y_1) = (ax_1, ay_1).$

- (a) Mostre que com essas operações vale a associatividade da adição em \mathbb{R}^2 .
- (b) Mostre que com essas operações vale a comutatividade da adição em \mathbb{R}^2 .
- (c) Determine um elemento neutro da adição definida em \mathbb{R}^2 .
- (d) Mostre que nem todo elemento de \mathbb{R}^2 terá um elemento oposto (simétrico) com a adição definida e conclua que com as operações dadas, \mathbb{R}^2 não é um \mathbb{R} -espaço vetorial.
- (4) Dados $a, x_1, y_1, z_1, x_2, y_2, z_2 \in \mathbb{R}$, considere as seguintes operações definidas em \mathbb{R}^3 :

$$(x_1, y_1, z_1) + (x_2, y_2, z_2) = (0, 0, 0)$$

$$a(x_1, y_1, z_1) = (ax_1, ay_1, az_1).$$

Mostre que com essas operações, \mathbb{R}^3 não é um $\mathbb{R}\text{-espaço}$ vetorial.

(5) Verifique se \mathbb{R}^2 com as operações abaixo é um \mathbb{R} -espaço vetorial:

$$(x_1, y_1) + (x_2, y_2) = (x_1 + y_1, 0)$$

$$a(x_1, y_1) = (ax_1, ay_1),$$

para quaisquer $a, x_1, y_1, x_2, y_2 \in \mathbb{R}$.

(6) Verifique se \mathbb{R}^2 com as operações abaixo é um \mathbb{R} -espaço vetorial:

$$(x_1, y_1) + (x_2, y_2) = (x_1 + y_1, x_2 + y_2)$$

 $a(x_1, y_1) = (a^2x_1, a^2y_1),$

para quaisquer $a, x_1, y_1, x_2, y_2 \in \mathbb{R}$.

- (7) Sejam a um número real e v um elemento de um \mathbb{R} -espaço vetorial V. Mostre que, se av=0 então a=0 ou v é o vetor nulo de V.
- (8) Seja v um elemento não nulo de um espaço vetorial real V. Mostre que a função

$$\mathbb{R} \longrightarrow V$$

$$a \longmapsto av$$

é injetora.