

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO

Departamento de Matemática Pura e Aplicada Centro de Ciências Exatas, Naturais e da Saúde - CCENS Tutoria em Álgebra Linear

1 Sessões de tutorias

Cada sessão de tutoria comprenderá em uma exposição de 2h dos tutores para grupos de no máximo 10 alunos pré escolhidos sobre um dos tópicos listados a seguir.

(1) Espaço vetorial real

Ementa: Definição e exemplos de espaços vetoriais reais

Objetivos: Aprender a verificar se um dado conjunto é ou não um espaço vetorial sobre o corpo dos números reais. Caso não seja, saber indicar a(s) propriedades de espaço vetorial que não são satisfeitas pelo conjunto dado.

(2) Matrizes - Parte I

Ementa: Definição, ordem, notação e exemplos de matrizes; tipos especiais de matrizes (matrizes quadrada, nula, linha, coluna, diagonal, identidade, triangular, simétrica e antissimétrica); adição de matrizes e propriedades; multiplicação por escalar e propriedades.

Objetivos: Assimilar o conceito de matrizes e suas principais propriedades. Compreender que o conjunto das matrizes é um exemplo de espaço vetorial.

(3) Matrizes - Parte II

Ementa: Multiplicação de matrizes; transposição de matrizes; matrizes inversas.

Objetivos: Entender a operação de multiplicação de matrizes e utilizá-la para entendimento e determinação de inversas de matrizes.

(4) Sistemas lineares

Ementa: Definição, exemplos de sistemas lineares e classificação quanto a solução; matriz de um sistema; método de Gauss (escalonamento); método da matriz inversa.

Objetivos: Saber utilizar o método de Gauss para determinar a solução de um sistema linear e classificar um sistema linear de acordo com sua solução.

(5) Determinantes

Ementa: Definição, exemplos e propriedades de determinantes de uma matriz.

Objetivos: Entender os métodos de determinação do determinante de uma matriz e saber utilizar suas propriedades na resolução de problemas.

(6) Subespaços vetoriais - Parte I

Ementa: Definição e exemplos de subespaços vetorias; subespaços vetoriais triviais.

Objetivos: Saber verificar se um subconjunto de um espaço vetorial é um subespaço vetorial.

(7) Subespaços vetoriais - Parte II

Ementa: Operações com subespaços vetoriais; intersecção e soma de subespaços; subespaço vetorial gerado; espaços vetoriais finitamente gerados.

Objetivos: Entender as principais operações que podem ser realizadas entre subespaços vetoriais.

(8) Dependência e independência linear

Ementa: Combinações lineares; conjuntos linearmente dependentes e linearmente independentes.

Objetivos: Saber verificar se um dado conjunto de vetores em um espaço vetorial é l.i. ou l.d., bem como compreender qual o significado dessas classificações e como utilizá-las em demonstrações.

(9) Base e dimensão

Ementa: Definição e exemplos de base de um espaço vetorial; dimensão de um espaço vetorial.

Objetivos: Comprrender procedimentos para determinar a base de um espaço vetorial. Saber verificar se um dado conjunto é ou não uma base de um dado espaço vetorial.

(10) Transformações lineares - Parte I

Ementa: Definição e exemplos de transformações lineares; núcleo e imagem de uma transformação linear; teorema do núcleo e da imagem; isomorfismo

Objetivos: Aprender a provar que uma dada aplicação é uma transformação linear e calcular seu núcleo e imagem. Entender como se usa o teorema do núcleo e da imagem em demonstrações.

(11) Transformações lineares - Parte II

Ementa: Matriz de uma transformação linear; operações com transformações lineares; operadores lineares.

Objetivos: Determinar a matriz de uma transformação linear e utilizá-la na resolução de problemas envolvendo transformações lineares.

(12) Autovalores e autovetores

Ementa: Autovalores e autovetores; polinômio característico; diagonalização de operadores.

Objetivos: Calcular os autovalores e autovetores de um operador linear dado e compreender a utilização destes na diagonalização de operadores.