

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO

Centro de Ciências Exatas, Naturais e da Saúde - CCENS Departamento de Matemática Pura e Aplicada

Disciplina: Álgebra linear - Prof. Victor Martins

Prova 1 - 19/12/2024

Nomo:	Matrianla
NOMe:	Wiauficula:

Questão 1: $(2,0 \ pontos)$ Verifique se o subconjunto W é um subespaço vetorial real de V em cada item:

(a)
$$V = \mathbb{R}^3$$
; $W = \{(a, 0, b) : a, b \in \mathbb{R}\}.$

(b)
$$V = M_2(\mathbb{R}); \qquad W = \{A \in M_2(\mathbb{R}) : det A = 0\}.$$

Questão 2: $(1,0 \ ponto)$ Verifique se V é soma direta de U e W, onde $V=\mathbb{R}^3$,

$$U = \{(x, y, 0) : x, y \in \mathbb{R}\},\$$

$$W = \{(z, z, z) : z \in \mathbb{R}\}.$$

Questão 3: (2,5 pontos) Sejam $V = \mathbb{R}^3$ e os subespaços

$$W_1 = \{(x, y, z) \in \mathbb{R}^3 : x + y - 2z = 0\} \subset \mathbb{R}^3,$$

$$W_2 = \{(x, y, z) \in \mathbb{R}^3 : y + z = 0\} \subset \mathbb{R}^3.$$

Determine:

- (a) $dimW_1$.
- (b) $dimW_2$.
 - (c $dim(W_1 \cap W_2)$.
- (d) $dim(W_1 + W_2)$.
- (e) $W_1 + W_2 = V$? $W_1 + W_2$ é soma direta?

Questão 4: (3,0 pontos) Determine a dimensão dos subespaços vetoriais abaixo (exiba uma base em cada caso):

- (a) $U=\{(x,y,z,w)\in\mathbb{R}^4:\ 2x-2y+z=0\ \ {\rm e}\ \ 2x-y+w=0\}$ subespaço de $V=\mathbb{R}^4$
- (b) $W=\{(x,y,z,w)\in\mathbb{R}^4:\ 3x-3y+z=0\quad {\rm e}\quad y+w=0\}$ subespaço de $V=\mathbb{R}^4$
- (c) $U \cap W$ subespaço de $V = \mathbb{R}^4$

Questão 5: $(1,0 \ ponto)$ Verifique se \mathbb{R}^2 com as operações de adição e multiplicação por escalar definidas a seguir é um \mathbb{R} -espaço vetorial:

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 - y_2)$$

 $a(x, y) = (a^2x, a^2y).$

Questão 6: (1,5 pontos) Assinale (**V**) para as afirmações verdadeiras e (**F**) para as afirmações falsas. Demonstre ou dê um contraexemplo, para justificar sua resposta.

- (a) () \mathbb{R}^2 é um subespaço vetorial de \mathbb{R}^3 .
- (b) () O conjunto de vetores $S=\{(1,0,0),(0,1,0),(-1,0,1),(0,0,1)\}\subset\mathbb{R}^3$ é linearmente independente.
- (c) () Como a dimensão de \mathbb{R}^2 como espaço vetorial é 2, então qualquer conjunto com 2 vetores do \mathbb{R}^2 é uma base desse espaço.

BOA PROVA!
BOM DESCANSO E BOAS FESTAS DE FIM DE ANO!