

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO

Centro de Ciências Exatas, Naturais e da Saúde - CCENS Departamento de Matemática Pura e Aplicada

Disciplina: Álgebra linear - Prof. Victor Martins

Prova 2 - 06/06/2023

Nome:	Matrícula:

Questão 1: $(2,0 \ pontos)$ Verifique se o subconjunto W é um subespaço vetorial real de V em cada item:

- (a) $V = \mathbb{R}^3$; $W = \{(a, 0, b) : a, b \in \mathbb{R}\}.$
- (b) $V = M_2(\mathbb{R}); \qquad W = \{ A \in M_2(\mathbb{R}) : det A = 0 \}.$

Questão 2: (2,0 pontos) Mostre que $V = U \oplus W$, onde $V = \mathbb{R}^3$ e

$$U = \{(x, y, 0) : x, y \in \mathbb{R}\},\$$

$$W = \{(z, z, z) : z \in \mathbb{R}\}.$$

Questão 3: $(2,0 \ pontos)$ Mostre que os vetores u=(1-a,1+a) e v=(1+a,1-a), com $a\neq 0$, são LI em \mathbb{R}^2 .

Questão 4: (3,0 pontos) Determine a dimensão dos subespaços vetoriais abaixo (exiba uma base em cada caso):

- (a) $U = \{(x, y, z, w) \in \mathbb{R}^4 : 2x 2y + z = 0 \text{ e } 2x y + w = 0\}$ subespaço de $V = \mathbb{R}^4$
- (b) $W=\{(x,y,z,w)\in\mathbb{R}^4:\ 3x-3y+z=0\quad \text{e}\quad y+w=0\}$ subespaço de $V=\mathbb{R}^4$
- (c) $U \cap W$ subespaço de $V = \mathbb{R}^4$

Questão 5: $(2,0 \ pontos)$ Mostre que $S = \{(1,1,1), (0,1,1), (0,1,-1)\}$ é um conjunto gerador para o espaço vetorial real $V = \mathbb{R}^3$.

Questão 6: (2,0 pontos) Assinale (V) para as afirmações verdadeiras e (F) para as afirmações falsas. Demonstre ou dê um contraexemplo, para justificar sua resposta.

- (a) () \mathbb{R}^2 é um subespaço vetorial de \mathbb{R}^3 .
- (b) () O conjunto de vetores $S=\{(1,0,0),(0,1,0),(-1,0,1),(0,0,1)\}\subset\mathbb{R}^3$ é linearmente independente.
- (c) () O conjunto $S = \{1, (x-1)^2, x^3\}$ é um conjunto gerador para o espaço $P_3(\mathbb{R})$ dos polinômios reais de grau até 3 em uma incógnita.
- (d) () Como a dimensão de \mathbb{R}^2 como espaço vetorial é 2, então qualquer conjunto com 2 vetores do \mathbb{R}^2 é uma base desse espaço.