

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO

Departamento de Matemática Pura e Aplicada Centro de Ciências Exatas, Naturais e da Saúde

Disciplina: Álgebra Linear Prof^o. Victor Martins

Lista 7: Bases e dimensão

- (1) Seja V um espaço vetorial sobre \mathbb{K} . Dados dois vetores $u, v \in V$, mostre que eles são linearmente dependentes se, e somente se, um é múltiplo escalar do outro.
- (2) Considere os espaços vetoriais V dados abaixo munidos das operações usuais de adição e de multiplicação por escalar. Para cada caso abaixo, responda se $S \subset V$ é um conjunto LI ou LD em V:
 - (a) $V = \mathbb{C}^3$, $S = \{(1, 1, 1), (i, 2i, i), (2, 1, 2)\}.$
 - (b) $V = \mathbb{R}^3$, $S = \{(1, 1, 1), (1, 2, 3), (1, 4, 9)\}.$
 - (c) $V = \mathbb{R}^3$, $S = \{(1, 2, 3), (2, 1, -2), (3, 1, 1), (4, -1, -2)\}.$
 - (d) $V = \mathbb{R}^2$, $S = \{(1,1), (-1,1)\}.$
 - (e) $V = M_2(\mathbb{C}), \qquad S = \left\{ \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \right\}.$
 - (f) $V = P(\mathbb{R}), \qquad S = \{x^3 5x^2 + 1, 2x^4 + 5x 6, x^2 5x + 2\}.$
 - (g) $V = P_2(\mathbb{C}), \qquad S = \{1, x+i, (x+i)^2\}.$
- (3) Sejam $\mathbb{K} = \mathbb{F}_2 = \{0, 1\}$ e $S = \{(1, 1, 0), (1, 0, 1), (0, 1, 1)\} \subset \mathbb{K}^3$. S é LI ou LD?
- (4) $V = \mathbb{C}$ é um espaço vetorial sobre \mathbb{R} com as operações usuais. Determine uma base e sua dimensão.
- (5) Considere o subespaço de \mathbb{R}^3 gerado pelos vetores $v_1=(1,1,0), v_2=(0,-1,1)$ e $v_3=(1,1,1).$ $\mathbb{R}^3=\langle v_1,v_2,v_3\rangle$? Justifique.
- (6) Seja $W = \langle v_1 = (1, -1, 0, 0), v_2 = (0, 0, 1, 1), v_3 = (-2, 2, 1, 1), v_4 = (1, 0, 0, 0) \rangle \subset \mathbb{R}^4$.
 - (a) $(2, -3, 2, 2) \in W$? Justifique.
 - (b) Exiba uma base para W. Qual a dimensão?
 - (c) $W = \mathbb{R}^4$? Por quê?
- (7) Considere os seguintes vetores do \mathbb{R}^3 : $v_1 = (1, 2, 3), v_2 = (2, 1, -2), v_3 = (3, 1, 1), v_4 = (4, -1, -2).$
 - (a) Estes vetores são LD. Justifique.

(b) Expresse o vetor nulo como combinação linear destes vetores, na qual os coeficientes do da combinação não sejam todos nulos.

(8) Considere o sistema linear homogêne
o
$$\left\{ \begin{array}{ll} 2x+4y-6z=0\\ x-y+4z=0\\ 6y-4z=0 \end{array} \right.$$

- (a) Se $W \subset \mathbb{R}^3$ é o subespaço solução do sistema acima, obtenha uma base e a dimensão de W.
- (b) Se $U \subset \mathbb{R}^3$ é o espaço gerado pelos vetores-linha da matriz de coeficientes do sistema acima, obtenha uma base e a dimensão de U.
- (9) Sejam $W_1 = \{(x,y,z,t) \in \mathbb{R}^4: x+y=0 \text{ e } z-t=0\}$ e $W_2 = \{(x,y,z,t) \in \mathbb{R}^4: x-y-z+t=0\}$ subespaços de \mathbb{R}^4 .
 - (a) Exiba uma base para $W_1 \cap W_2$.
 - (b) Determine $W_1 + W_2$. A soma é direta?
 - (c) $W_1 + W_2 = \mathbb{R}^4$?

(10) Sejam
$$W_1 = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a = d \text{ e } b = c \right\} e W_2 = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a = c \text{ e } b = d \right\}$$
 subespaços de $M_2(\mathbb{C})$.

- (a) Exiba uma base para $W_1 \cap W_2$.
- (b) Determine $W_1 + W_2$. A soma é direta?
- (c) $W_1 + W_2 = M_2(\mathbb{C})$?
- (11) Sejam $V = M_2(\mathbb{R})$ e W o subespaço de V gerado por

$$S = \left\{ \left(\begin{array}{cc} 1 & -5 \\ -4 & 2 \end{array} \right), \left(\begin{array}{cc} 1 & 1 \\ -1 & 5 \end{array} \right), \left(\begin{array}{cc} 2 & -4 \\ -5 & 7 \end{array} \right), \left(\begin{array}{cc} 1 & -7 \\ -5 & 1 \end{array} \right) \right\}.$$

Encontre uma base e a dimensão de W.

(12) Seja W o subespaço de \mathbb{R}^4 gerado pelos seguintes vetores:

$$v_1 = (1, 1, 3, 1),$$
 $v_2 = (1, -3, 15, 9),$ $v_3 = (1, 2, 0, -1).$

- (a) Obtenha uma base para W.
- (b) Complete essa base obtida no item (a) até que se tenha uma base para o \mathbb{R}^4 .
- (13) Mostre que $B = \{(1,1,1), (-1,1,0), (1,0,-1)\}$ é uma base de \mathbb{R}^3 e obtenha as coordenadas de u = (1,0,0) em relação à base B.
- (14) Sejam $B = \{(1,0),(0,1)\}, B_1 = \{(-1,1),(1,1)\}, B_2 = \{(\sqrt{3},1),(\sqrt{3},-1)\} \in B_3 = \{(2,0),(0,2)\},$ bases ordenadas de \mathbb{R}^2 .

- (a) Obtenha as matrizes de mudança de base:
 - (i) $[I]_{B_1}^B$
 - (ii) $[I]_B^{B_1}$
 - (iii) $[I]_{B_2}^B$
 - (iv) $[I]_{B_3}^B$
- (b) Quais são as coordenadas do vetor v = (3, -2) em relação as bases b, B_1, B_2 e B_3 ?
- (c) As coordenadas de um vetor u em relação a base B_1 são dadas por $[u]_{B_1} = \begin{bmatrix} 4 \\ 0 \end{bmatrix}$. Quais são as coordenadas de u em relação às bases B, B_2 e B_3 ?
- (15) Sejam $V = \mathbb{R}^3$, B e B' bases ordenadas de V e seja

$$[I]_B^{B'} = \left[\begin{array}{ccc} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{array} \right].$$

Obtenha
$$[u]_B$$
, se $[u]_{B'} = \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}$ e obtenha $[w]_{B'}$, se $[w]_B = \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}$.

(16) Seja V o espaço das matrizes triangulares superiores de ordem 2 sobre $\mathbb R$ e sejam

$$B = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\} \qquad e \qquad B' = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right\}$$

duas bases de V. Obtennha $[I]_{B'}^B$.