

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO

Departamento de Matemática Pura e Aplicada - (CCENS)

Prova final - 25/07/2023 Disciplina: Álgebra linear Prof. Victor Martins

Nome:_______Matrícula:_____

Questão 1: (2,0 pontos) Faça a correspondência entre cada item e sua definição.

- (A) Subespaço vetorial
- (B) Conjunto linearmente independente
- (C) Base de um espaço vetorial
- (D) Dimensão de um espaço vetorial
- (E) Transformação linear
- (F) Núcleo de uma transformação linear
- (G) Isomorfismo de espaços vetoriais
- (H) Operador diagonalizável
- Aplicação entre espaços vetoriais que preserva a adição de vetores e a multiplicação por escalar.
- () Subconjunto do espaço vetorial que gera todo o espaço e ainda é linearmente independente.
- () Subconjunto dos vetores do domínio de uma transformação linear cuja imagem é o vetor nulo.
- Subconjunto de um espaço vetorial que com as mesmas operações do espaço é um espaço vetorial.
- () Aplicação bijetora entre espaços vetoriais que preserva a adição e a multiplicação por escalar.
- () Transformação linear de um espaço nele próprio tal que existe uma base desse espaço formada por autovetores da transformação.
- () Menor quantidade de vetores de um espaço vetorial que gera todo o espaço e é linearmente independente.
- () Conjunto de vetores de um espaço cuja única forma de combinação linear destes resultando no vetor nulo é com os escalares todos nulos.

Questão 2: Seja

$$W = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{R}) : b + d = c \quad e \quad a = 0 \right\}$$

um subconjunto do \mathbb{R} -espaço vetorial $M_2(\mathbb{R})$.

- (a) $(1,0 \ ponto)$ Mostre que W é um subespaço vetorial de $M_2(\mathbb{R})$.
- (b) $(1,0 \ ponto)$ Determine uma base para W.

Questão 3: Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ uma aplicação dada por T(x, y, z) = (x + y + z, 2y + z, z).

- (a) $(1,0 \ ponto)$ Mostre que T é uma transformação linear.
- (b) (0.5 pontos) Determine [T].
- (b) (0.5 pontos) Determine o núcleo de T.
- (c) (1.5 pontos) T é um isomorfismo? Se sim, determine T^{-1} e $[T^{-1}]$.

Questão 4: Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ um operador linear dado por T(x, y, z) = (x + 2y + z, 3y + z, -z).

- (a) (0.5 pontos) Determine [T].
- (b) $(0.5 \ pontos)$ Determine o polinômio característico de T.
- (c) (0.5 pontos) Determine, caso existam, os autovalores de T.
- (d) (0.5 pontos) Determine, caso existam, os autovetores de T.
- (e) $(0,5 \ pontos) \ T$ é diagonalizável? Se sim, exiba uma base α de \mathbb{R}^3 formada por autovetores e $[T]^{\alpha}_{\alpha}$.